

LA-UR-17-27868

Approved for public release; distribution is unlimited.

Title: Neutron Electric Dipole Moment

Author(s): Bhattacharya, Tanmoy

Intended for: Lattice QCD, 2017-08-28 (Santa Fe, New Mexico, United States)

Issued: 2017-08-31

Introduction
Dirac Equation
Lattice Calculation
Two point functions
Three point functions

Neutron Electric Dipole Moment

Tanmoy Bhattacharya

Los Alamos National Laboratory

August 30, 2017

Standard Model CP Violation Effective Field Theory BSM Operators Form Factors

Introduction

Standard Model CP Violation

Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - ullet Gives a tiny $(\sim 10^{-32}\, {
 m e-cm})$ contribution to <code>nEDM</code>

Dar arXiv:hep-ph/0008248.

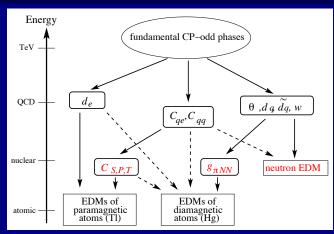
- \bullet CP-violating mass term and effective ΘGG interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM

Introduction Effective Field Theory



Introduction BSM Operators

Standard model CP violation in the weak sector. Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\psi \gamma_5 \psi$.
 - Toplogical charge $G_{\mu\nu}\tilde{G}^{\mu\nu}$.
- Suppressed by $v_{
 m EW}/M_{
 m BSM}^2$:
 - Electric Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{F}^{\mu\nu} \psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{
 m BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}$.
 - Various four-fermi operators.

Introduction

Form Factors

Vector form-factors

Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left. \left(2i \, m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \right. \\ &+ \left. \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N=F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $\P F_3(0)/2m_N$ is the electric dipole moment.
- $igcup_{F_A}$ and F_3 violate P; F_3 violates CP.

Free neutrons
Phase conventions
State-dependent phases
Electric Dipole Moment

Dirac Equation

Free neutrons

$$(e^{\beta\gamma_5}) + e^{i\alpha\gamma_5} m) \psi = 0.$$

This 'free' equation has space-time discrete symmetries:

$$\mathcal{P}: \qquad \psi(\vec{x},t) \to e^{(\beta-i\alpha)\gamma_5} \gamma_0 \psi(-\vec{x},t)$$

$$\mathcal{C}: \qquad \psi(\vec{x},t) \to i e^{\beta\gamma_5} \gamma_2 \psi^*(\vec{x},t)$$

$$\mathcal{T}: \qquad \psi(\vec{x},t) \to -e^{-i\alpha\gamma_5} \gamma_1 \gamma_3 \psi^*(-\vec{x},t)$$

- Even when theory does not have these symmetries,
- asymptotic states always do,
- but operators have extra γ_5 phases.
- $e^{(-eta+ilpha)\gamma_5/2}\,\psi$ has standard phases.

Dirac Equation

Phase conventions

Consider $N = (\bar{u}^c \gamma_5 d)u$ with usual phases for u and d. If theory has \mathcal{C} , \mathcal{P} , \mathcal{T} , N has the same phases.

So, in a symmetric theory, $\alpha = \beta = 0$.

Otherwise, by Lorentz invariance, we still have

$$\mathcal{P} = \left[e^{\beta(p^2)\gamma_5} \Pi(p^2) \not p - e^{i\alpha(p^2)\gamma_5} \Sigma(p^2) m \right]^{-1}.$$

Like the free Dirac equation, but $e^{(\beta(p^2)-i\alpha(p^2))\gamma_5}$ is not local.

Dirac Equation State-dependent phases

By Källen-Lehman spectral representation, the propagator is

$$\sum \rho(\mu^2) Z_N(\mu^2) \frac{e^{-\beta(\mu^2)\gamma_5} \not p + e^{-i\alpha(\mu^2)\gamma_5} Z_m(\mu^2) \mu}{p^2 - (Z_m(\mu^2)\mu)^2} \,.$$

When there is no overall symmetry operator, phases state-dependent.

 $N_{\rm st} \equiv e^{(-eta(m_N^2)+ilpha(m_N^2))\gamma_5/2}N$ has standard transformations and equation of motion, but only for the neutron; the excited states have non-standard phases.

Dirac Equation

Electric Dipole Moment

 $e\sigma \cdot B$ is even under \mathcal{C} , \mathcal{P} and \mathcal{T} , $e\sigma \cdot E$ is odd under \mathcal{P} and \mathcal{T} .

$$\Sigma \cdot F \propto \begin{pmatrix} \sigma \cdot B & i\sigma \cdot E \\ i\sigma \cdot E & \sigma \cdot B \end{pmatrix}$$
,

which is $\sigma \cdot B$ in the rest frame iff $p \pm m = 0$.

In general, we need to use $e^{i\alpha\gamma_5}\Sigma \cdot F$.

So, important to use N_{st} instead of N in analyses.

At the Green's function level, this is

$$\langle TN_{\rm st}O\bar{N}_{\rm st}\rangle = e^{(-\beta(m_N^2) + i\alpha(m_N^2))\gamma_5/2} \langle TNO\bar{N}\rangle e^{(\beta(m_N^2) + i\alpha(m_N^2))\gamma_5/2} \,.$$

Introduction
Dirac Equation
Lattice Calculation
Two point functions
hree point functions

Methods

opological charge and Weinberg operato uark Electric Dipole Moment uark Chromoelectric Moment eduction to three-point function fromo-edm diagrams

Lattice Calculation

Methods

Two methods for calculating the EDM.

- 1 Spin dependent energy in an external electromagnetic field.
 - Need to include background EM fields in gauge generation.
 - Can 'reweight' with disconnected loops.
 - EM flux quantized: so large fields in small volumes.
 - Need derivative at zero.
- $2 F_3$ Form factor
 - Need to calculate at non-zero momentum transfer.
 - Need derivative at zero-momentum: difficult on small lattices.
 - Need disconnected insertion of currents.
 - Need to account for γ_5 phase.
 - Many operators need 4-point functions, analytic continuation, or source methods.

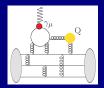
Methods
Topological charge and Weinberg operator
Quark Electric Dipole Moment
Quark Chromoelectric Moment
Reduction to three-point function
Chromo-edm diagrams

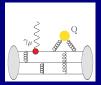
Lattice Calculation

Topological charge and Weinberg operator

To find the contribution of Θ , we need the correlation between the electric current and the topological charge. Similar calculation for the Weinberg operator.

$$\left\langle n \left| \left(\frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d \right) \mathbf{Q} \right| n \right\rangle = \frac{1}{2} \left\langle n \left| \left(\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d \right) \mathbf{Q} \right| n \right\rangle + \frac{1}{6} \left\langle n \left| \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right) \mathbf{Q} \right| n \right\rangle$$





Probably no non-zero signal yet.

- Shintani et al., Physical Review **D72** (2005) 014504.
- Berruto et al., Physical Review **D73** (2006) 054509.
- Guo et al., Physical Review Letters 115 (2015) 062001.
- Shindler et al., Physical Review **D92** (2015) 094518.
- Alexandrou et al., Physical Review D93 (2016) 074503.
- Shintani et al., Physica Review **D93** 094503.

need to be reanalyzed.

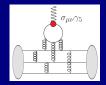
Abramczyk estimate that $F_3 \lesssim 0.07\bar{\theta}$ at 1σ .

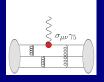
Lattice Calculation

Quark Electric Dipole Moment

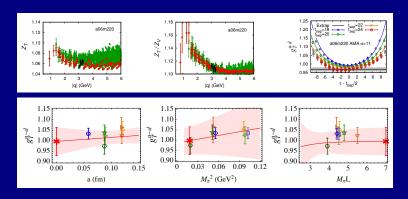
Since the quark electric dipole moment directly couples to the electric field, we just need to calculate its matrix elements in the neutron state.

$$\begin{split} \left\langle n \left| d_u^{\gamma} \, \bar{u} \sigma^{\mu\nu} u + d_d^{\gamma} \, \bar{d} \sigma^{\mu\nu} d \right| \right\rangle &= \\ \frac{d_u^{\gamma} + d_d^{\gamma}}{2} \left\langle n \left| \bar{u} \sigma^{\mu\nu} u + \bar{d} \sigma^{\mu\nu} d \right| n \right\rangle + \frac{d_u^{\gamma} - d_d^{\gamma}}{2} \left\langle n \left| \bar{u} \sigma^{\mu\nu} u - \bar{d} \sigma^{\mu\nu} d \right| n \right\rangle \end{split}$$





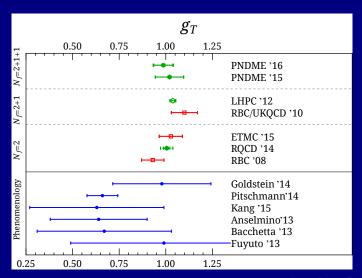
Parity mixing higher order in $\alpha_{\rm EW}$: so, result is same as tensor charge.



Results for u+d similar. $g_T^u=0.792(14);\ g_T^d=-0.194(14).$ Disconnected contribution small.

Introduction
Dirac Equation
Lattice Calculation
Two point functions
Three point functions

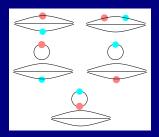
Methods
Topological charge and Weinberg operator
Quark Electric Dipole Moment
Quark Chromoelectric Moment
Reduction to three-point function
Chromo-edm diagrams



Lattice Calculation Quark Chromoelectric Moment

nEDM from quark chromoelectric moment is a four-point function:

$$\left\langle n \left| (\frac{2}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} \bar{d} \gamma_{\mu} d) \int d^4 x \left(d_u^G \, \bar{u} \sigma^{\nu \kappa} u + d_d^G \, \bar{d} \sigma^{\nu \kappa} d \right) \tilde{G}_{\nu \kappa} \right| n \right\rangle$$



Methods
Topological charge and Weinberg operator
Quark Electric Dipole Moment
Quark Chromoelectric Moment
Reduction to three-point function
Chromo-edm diagrams

Lattice Calculation

Reduction to three-point function

The quark chromo-EDM operator is a quark bilinear. Schwinger source method: Add it to the Dirac operator in the propagator inversion routine:

$$D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu} \longrightarrow D + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})$$

The fermion determinant gives a 'reweighting factor'

$$\frac{\det(\cancel{D} + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon G_{\mu\nu})}{\det(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})}$$

$$= \exp \operatorname{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right]$$

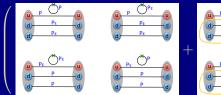
$$\approx \exp \left[i\epsilon \operatorname{Tr} \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\cancel{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right].$$

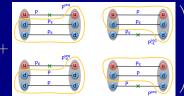
Introduction
Dirac Equation
Lattice Calculation
Two point functions
Three point functions

Methods
Topological charge and Weinberg operator
Quark Electric Dipole Moment
Quark Chromoelectric Moment
Reduction to three-point function
Chromo-edm diagrams

Lattice Calculation

Chromo-edm diagrams



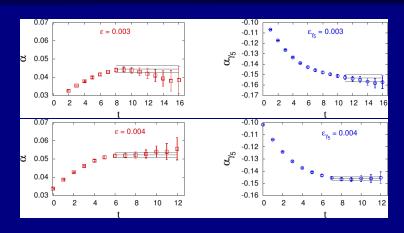


The chromoEDM operator is dimension 5.

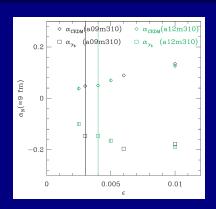
Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1.$

Need to check linearity.

Two point functions **Neutron Propagator**



Two point functions Linearity

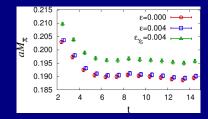


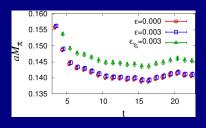
Preliminary; Connected Diagrams Only

Use $\epsilon \approx \frac{a}{30 \text{fm}} \approx 6.6 \text{MeV} \ a \approx 0.36 \ ma$ for experiments.

Two point functions Connected γ_5

$$a(\not\!\!D+m)+i\epsilon\gamma_5=e^{\frac{i}{2}\alpha_q\gamma_5}\left(a\not\!\!D+am_\epsilon\right)e^{\frac{i}{2}\alpha_q\gamma_5}$$
 where $\alpha_q\equiv\tan^{-1}\frac{\epsilon}{am}$ and $am_\epsilon\equiv\sqrt{(am)^2+\epsilon^2}$





	a12m310	a09m310
$am^0 \equiv \frac{1}{2\kappa} - 4$	-0.0695	-0.05138
$am_{cr} \equiv \frac{1}{2\kappa_c} - 4$	-0.08058	-0.05943
$am \equiv am^0 - am_{cr}$	0.01108	0.00805
ϵ	0.004	0.003
am_{ϵ}	0.01178	0.00859
M_π^0	0.1900(4)	0.1404(3)
M_{π}^{CEDM}	0.1906(4)	0.1407(3)
$M_\pi^{\gamma_5}$	0.1961(4)	0.1450 (3)
$M_{\pi}^{0} imes \sqrt{rac{m_{\epsilon}}{m}}$	0.1959(4)	0.1450(3)

Three point functions F_3 Form factor from CEDM

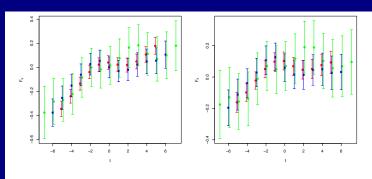


Figure 4: Signal in F_3 from the insertion of the cEDM operator in the u (left) and d (right) quarks

Preliminary; Connected Diagrams Only

Three point functions

Renormalization

RI-SMOM scheme for non-perturbative renormalization worked out.

Most divergent mixing with $a^{-2}\alpha_s\bar\psi\gamma_5\psi$ even with chiral symmetry. Effect same as of $(\alpha_s/ma^2)G\cdot \tilde G$.

Current estimates of nEDM:

- CEDM is O(1).
- ullet $(lpha_s/ma^2)G\cdot ilde{G}$ contribution is O(1)-O(10) at $a\sim 0.1$ fm

Not present in connected diagrams with good chiral symmetry! For Wilson fermions, O(a) chiral breaking gives multiplicative correction.